What is required to measure the wear of explanted metal-on-metal hips?

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/11896/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
WHAT IS REQUIRED TO MEASURE THE WEAR OF EXPLANTED METAL-ON-METAL HIPS?

P Bills1, R J Underwood2, P M Cann2, A Hart3, X Jiang1, L Blunt1

1Centre for Precision Technologies, University of Huddersfield, 2Tribology Group, Imperial College London, 3Department of Musculoskeletal Surgery, Imperial College London

WHAT IS REQUIRED TO MEASURE THE WEAR OF EXPLANTED METAL-ON-METAL HIPS?

Presented at
BORS Annual Meeting Cardiff
12 – 13 July, 2010

Background

• Worldwide interest in failure of Metal-on-Metal (MoM) hips
• 150,000 large diameter MoM hips implanted in UK
• Failure rate of resurfacings is 7.6%, compared to 3% for cemented hips
• Three designs of MoM hips have been removed from the market in past 4 years
• NJR data suggests 43% of hip failures are unexplained
• Wear analysis is vital tool in understanding failure mechanisms

Measurement Requirements

• No British Standard to measure wear of explanted hip joints
• No validated measurement protocol in the literature
• Typical linear wear rates for explanted hips are:
 - Cup 0 – 180 μm/year
 - Head 0 – 750 μm/year

Our aims:
To assess two of the most commonly used techniques namely roundness measurement and co-ordinate measurement and consider the advantages and disadvantages of both in detail.

Wear and Form

• Hip joints are not perfectly spherical as manufactured – the deviations are referred to as “Form”
• The manufactured shape of the components is unknown
• Form errors can be up to 30 μm
• Wear may be smaller than form errors
• Need to be able to separate wear and worn when analysing data

The Talyrond 365 is a stylus based roundness machine. Hip located on a rotating table and the stylus measures the deviation from a perfect circle. Single profile measured to an accuracy of 30 nm and up to 72,000 data points per rev.

Cost ~£25 - 250k ~£10 - 80k
Resolution 0.02 – 2 µm 1 – 10 nm
Total Uncertainty Probing 0.7 µm Scanning 1.3 µm
No of data points 10,000 + Up to 72,000 points per revolution
Time 15-30 minutes per component
Up to 1.5 hrs per component for 3D map.
Absolute or Relative Measurement Traceable Calibration
Calibrated from traceable standard

Conclusion

• The CMM and Talyrond are both instruments suited to measuring wear of explanted hips.
• Development of robust measurement protocol and standard required including:
 - Comprehensive study of good practice.
 - Verifiable uncertainty statements.

http://www2.hud.ac.uk/ce/research/cpt/
http://www1.imperial.ac.uk/medicine/hipcentre
x.jiang@hud.ac.uk
a.hart@imperial.ac.uk

Talyrond

Hip located on a rotating table and the stylus measures the deviation from a perfect circle. Single profile measured to an accuracy of 30 nm and up to 72,000 data points per rev.

Accuracy: Gauge > 12 nm
Spindle < 0.02 µm
Individual roundness profiles can be stitched together to build up 3D maps

Wear and Form

Co-ordinate measuring machine (CMM)

The Zeiss PRISMO is a co-ordinate measuring machine.

• Hip located in a chuck, probe measures grid of points, scanning whole surface to determine extent of ‘unworn area’.
• Unworn area scanned to create a reverse engineered 3D CAD surface which represents the component ‘pre-wear’ surface.
• Whole surface scanned and deviation is mapped.
• The maximum linear wear and wear volume are then calculated directly.

Comparison of Talyrond & CMM

<table>
<thead>
<tr>
<th></th>
<th>CMM</th>
<th>Talyrond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>~£25 - 250k</td>
<td>1 – 10 £</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.02 – 2 µm</td>
<td>1 – 10 nm</td>
</tr>
<tr>
<td>Probing Error</td>
<td>0.7 µm</td>
<td>Relative 30 mm</td>
</tr>
<tr>
<td>Scanning Error</td>
<td>1.3 µm</td>
<td>Absolute 4 µm</td>
</tr>
<tr>
<td>No of data points</td>
<td>10,000 +</td>
<td>Up to 72,000 points per revolution</td>
</tr>
<tr>
<td>Time</td>
<td>15-30 minutes per component</td>
<td>Up to 1.5 hrs per component for 3D map, 2D profile in <1 minute</td>
</tr>
<tr>
<td>Absolute or Relative Measurement</td>
<td>Traceable Calibration</td>
<td>Calibrated from traceable standard</td>
</tr>
</tbody>
</table>

Finite Element Analysis (FEA)

- 3D simulation of MoM joint in contact with a femur
- Comparison of different designs with respect to wear and clinical outcome
- Potential to predict long-term performance

References

Stedman, M, 1987 basis for comparing the performance of surface measuring machines. Prec. Eng. 9, 149-152

The Zeiss PRISMO is a co-ordinate measuring machine.

• Hip located in a chuck, probe measures grid of points, scanning whole surface to determine extent of ‘unworn area’.
• Unworn area scanned to create a reverse engineered 3D CAD surface which represents the component ‘pre-wear’ surface.
• Whole surface scanned and deviation is mapped.
• The maximum linear wear and wear volume are then calculated directly.

Presentation at
BORS Annual Meeting Cardiff
12 – 13 July, 2010

p.j.bills@hud.ac.uk
richard.underwood@ic.ac.uk
http://www2.hud.ac.uk/ce/research/cpt/
http://www1.imperial.ac.uk/medicine/hipcentre
x.jiang@hud.ac.uk
a.hart@imperial.ac.uk