University of Huddersfield Repository

Bills, Paul J., Underwood, R.J., Cann, P., Hart, A, Jiang, Xiangqian and Blunt, Liam

What is required to measure the wear of explanted metal-on-metal hips?

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/11896/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
WHAT IS REQUIRED TO MEASURE THE WEAR OF EXPLANTED METAL-ON-METAL HIPS?

P Bills1, R J Underwood2, P M Cann2, A Hart3, X Jiang1, L Blunt1

1Centre for Precision Technologies, University of Huddersfield, 2Tribology Group, Imperial College London, 3Department of Musculoskeletal Surgery, Imperial College London

WHAT IS REQUIRED TO MEASURE THE WEAR OF EXPLANTED METAL-ON-METAL HIPS?

Presented at
BORS Annual Meeting
Cardiff
12 – 13 July, 2010

Background

- Worldwide interest in failure of Metal-on-Metal (MoM) hips
- 150,000 large diameter MoM hips implanted in UK
- Failure rate of resurfacings is 7.6%, compared to 3% for cemented hips
- Three designs of MoM hips have been removed from the market in past 4 years
- NJR data suggests 43% of hip failures are unexplained

Measurement Requirements

- No British Standard to measure wear of explanted hip joints
- No validated measurement protocol in the literature
- Typical linear wear rates for explanted hips are:
 - Cup 0 – 180 μm/year
 - Head 0 – 750 μm/year
- Accuracy required ~ 1 μm

Wear and Form

- Hip joints are not perfectly spherical as manufactured – the deviations are referred to as “Form”
- The manufactured shape of the components is unknown
- Form errors can be up to 30 μm
- Wear may be smaller than form errors
- Need to be able to separate wear and worn when analysing data

Comparison of Talyrond & CMM

The Talyrond 365 is a stylus based roundness machine. Hip located on a rotating table and the stylus measures the deviation from a perfect circle. Single profile measured to an accuracy of 30 nm and up to 72,000 data points per rev. Accuracy: Gauge > 12 nm Spindle <0.02 µm Individual roundness profiles can be stitched together to build up 3D maps

The Zeiss PRISMO is a co-ordinate measuring machine. Hip located in a chuck, probe measures grid of points, scanning whole surface to determine extent of ‘unworn area’. Unworn area scanned to create a reverse engineered 3D CAD surface which represents the component ‘pre-wear’ surface. Whole surface scanned and deviation is mapped. The maximum linear wear and wear volume are then calculated directly.

Co-ordinate measuring machine (CMM)

The CMM and Talyrond are both instruments suited to measuring wear of explanted hips.

The Zeiss PRISMO is a co-ordinate measuring machine.
- Hip located in a chuck, probe measures grid of points, scanning whole surface to determine extent of ‘unworn area’.
- Unworn area scanned to create a reverse engineered 3D CAD surface which represents the component ‘pre-wear’ surface.
- Whole surface scanned and deviation is mapped.
- The maximum linear wear and wear volume are then calculated directly.

Conclusion

- The CMM and Talyrond are both instruments suited to measuring wear of explanted hips.
- Development of robust measurement protocol and standard required including:
 - Comprehensive study of good practice.
 - Verifiable uncertainty statements.

AFM

Optical

Stylus

CMM

MoM retrieval wear

Wear scar

Unworn area of bearing

Wear scar depth

CMM Talyrond

Cost ~£25 - 250k ~£10 - 80k
Resolution 0.02 – 2 µm 1 – 10 nm
Total Uncertainty Probing 0.7 µm Scanning 1.3 µm U3 ~ 4 µm
No of data points 10,000 + Up to 72,000 points per revolution
Time 15-30 minutes per component dependent on point density
Up to 1.5 hrs per component for 3D map, 2D profile in <1 minute
Absolute or Relative Measurement Traceable Calibration Calibrated from traceable standard

What is required to measure the wear of explanted metal-on-metal hips?

P Bills, R J Underwood, P M Cann, A Hart, X Jiang, L Blunt

1Centre for Precision Technologies, University of Huddersfield, 2Tribology Group, Imperial College London, 3Department of Musculoskeletal Surgery, Imperial College London

WHAT IS REQUIRED TO MEASURE THE WEAR OF EXPLANTED METAL-ON-METAL HIPS?

Presented at
BORS Annual Meeting
Cardiff
12 – 13 July, 2010

Background

- Worldwide interest in failure of Metal-on-Metal (MoM) hips
- 150,000 large diameter MoM hips implanted in UK
- Failure rate of resurfacings is 7.6%, compared to 3% for cemented hips
- Three designs of MoM hips have been removed from the market in past 4 years
- NJR data suggests 43% of hip failures are unexplained

Measurement Requirements

- No British Standard to measure wear of explanted hip joints
- No validated measurement protocol in the literature
- Typical linear wear rates for explanted hips are:
 - Cup 0 – 180 μm/year
 - Head 0 – 750 μm/year
- Accuracy required ~ 1 μm

Wear and Form

- Hip joints are not perfectly spherical as manufactured – the deviations are referred to as “Form”
- The manufactured shape of the components is unknown
- Form errors can be up to 30 μm
- Wear may be smaller than form errors
- Need to be able to separate wear and worn when analysing data

Comparison of Talyrond & CMM

The Talyrond 365 is a stylus based roundness machine. Hip located on a rotating table and the stylus measures the deviation from a perfect circle. Single profile measured to an accuracy of 30 nm and up to 72,000 data points per rev. Accuracy: Gauge > 12 nm Spindle <0.02 µm Individual roundness profiles can be stitched together to build up 3D maps

The Zeiss PRISMO is a co-ordinate measuring machine.
- Hip located in a chuck, probe measures grid of points, scanning whole surface to determine extent of ‘unworn area’.
- Unworn area scanned to create a reverse engineered 3D CAD surface which represents the component ‘pre-wear’ surface.
- Whole surface scanned and deviation is mapped. The maximum linear wear and wear volume are then calculated directly.

Conclusion

- The CMM and Talyrond are both instruments suited to measuring wear of explanted hips.
- Development of robust measurement protocol and standard required including:
 - Comprehensive study of good practice.
 - Verifiable uncertainty statements.

AFM

Optical

Stylus

CMM

MoM retrieval wear

Wear scar

Unworn area of bearing

Wear scar depth

CMM Talyrond

Cost ~£25 - 250k ~£10 - 80k
Resolution 0.02 – 2 µm 1 – 10 nm
Total Uncertainty Probing 0.7 µm Scanning 1.3 µm U3 ~ 4 µm
No of data points 10,000 + Up to 72,000 points per revolution
Time 15-30 minutes per component dependent on point density
Up to 1.5 hrs per component for 3D map, 2D profile in <1 minute
Absolute or Relative Measurement Traceable Calibration Calibrated from traceable standard

WHAT IS REQUIRED TO MEASURE THE WEAR OF EXPLANTED METAL-ON-METAL HIPS?